Environmental Protection Agency | Solvent type | Average or-
ganic HAP
mass fraction | Typical organic HAP, percent by mass | | | s | | |--------------|---|--------------------------------------|----|----------|-----|----| | Aromatic ° | 0.06 | 4% Xylene,
Ethylbenzene. | 1% | Toluene, | and | 1% | ^a Use this table only if the solvent blend does not match any of the solvent blends in Table 3 to this subpart by either solvent blend name or CAS number and you only know whether the blend is aliphatic or aromatic. ^b Mineral Spirits 135, Mineral Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naphtha, Naphtha, Spirits, Petroleum Naphtha, Solvent Naphtha, Solvent Blend. ^c Medium-flash Naphtha, High-flash Naphtha, Aromatic Naphtha, Light Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light Aromatic Solvent. APPENDIX A TO SUBPART MMMM OF 63—ALTERNATIVE CAPTURE EFFICIENCY AND DESTRUCTION EFFI- CIENCY MEASUREMENT AND MONI- TORING PROCEDURES FOR MAGNET WIRE COATING OPERATIONS #### 1.0 Introduction. These alternative procedures for capture efficiency and destruction efficiency measurement and monitoring are intended principally for newer magnet wire coating machines where the control device is internal and integral to the oven so that it is difficult or infeasible to make gas measurements at the inlet to the control device. 1.2 In newer gas fired magnet wire ovens with thermal control (no catalyst), the burner tube serves as the control device (thermal oxidizer) for the process. The combustion of solvents in the burner tube is the principal source of heat for the oven. 1.3 In newer magnet wire ovens with a catalyst there is either a burner tube (gas fired ovens) or a tube filled with electric heating elements (electric heated oven) before the catalyst. A large portion of the solvent is often oxidized before reaching the catalyst. The combustion of solvents in the tube and across the catalyst is the principal source of heat for the oven. The internal catalyst in these ovens cannot be accessed without disassembly of the oven. This disassembly includes removal of the oven insulation. Oven reassembly often requires the installation of new oven insulation. 1.4 Some older magnet wire ovens have external afterburners. A significant portion of the solvent is oxidized within these ovens as well. 1.5 The alternative procedure for destruction efficiency determines the organic carbon content of the volatiles entering the control device based on the quantity of coating used, the carbon content of the volatile portion of the coating and the efficiency of the capture system. The organic carbon content of the control device outlet (oven exhaust for ovens without an external afterburner) is determined using Method 25 or 25A. 1.6 When it is difficult or infeasible to make gas measurements at the inlet to the control device, measuring capture efficiency with a gas-to-gas protocol (see §63.3965(d)) which relies on direct measurement of the captured gas stream will also be difficult or infeasible. In these situations, capture efficiency measurement is more appropriately done with a procedure which does not rely on direct measurement of the captured gas stream. 1.7 Magnet wire ovens are relatively small compared to many other coating ovens. The exhaust rate from an oven is low and varies as the coating use rate and solvent loading rate change from job to job. The air balance in magnet wire ovens is critical to product quality. Magnet wire ovens must be operated under negative pressure to avoid smoke and odor in the workplace, and the exhaust rate must be sufficient to prevent over heating within the oven. 1.8 The liquid and gas measurements needed to determine capture efficiency and control device efficiency using these alternative procedures may be made simultaneously. 1.9 Magnet wire facilities may have many (e.g., 20 to 70 or more) individual coating lines each with its own capture and control system. With approval, representative capture efficiency and control device efficiency testing of one magnet wire coating machine out of a group of identical or very similar magnet wire coating machines may be performed rather than testing every individual magnet wire coating machine. The operating parameters must be established for each tested magnet wire coating machine during each capture efficiency test and each control device efficiency test. The operating parameters established for each tested magnet wire coating machine also serve as the operating parameters for untested or very similar magnet wire coating machines represented by a tested magnet wire coating machine. ## 2.0 Capture Efficiency. 2.1 If the capture system is a permanent total enclosure as described in §63.3965(a), then its capture efficiency may be assumed to be 100 percent. 2.2 If the capture system is not a permanent total enclosure, then capture efficiency must be determined using the liquid-touncaptured-gas protocol using a temporary total enclosure or building enclosure in #### Pt. 63, Subpt. MMMM, App. A §63.3965(c), or an alternative capture efficiency protocol (see §63.3965(e)) which does not rely on direct measurement of the captured gas stream. 2.3 As an alternative to establishing and monitoring the capture efficiency operating parameters in §63.3967(f), the monitoring described in either section 2.4 or 2.5, and the monitoring described in sections 2.6 and 2.7 may be used for magnet wire coating machines. 2.4 Each magnet wire oven must be equipped with an interlock mechanism which will stop or prohibit the application of coating either when any exhaust fan for that oven is not operating or when the oven experiences an over limit temperature condition. 2.5 Each magnet wire oven must be equipped with an alarm which will be activated either when any oven exhaust fan is not operating or when the oven experiences an over limit temperature condition. 2.6 If the interlock in 2.4 or the alarm in 2.5 is monitoring for over limit temperature conditions, then the temperature(s) that will trigger the interlock or the alarm must be included in the start-up, shutdown and malfunction plan and the interlock or alarm must be set to be activated when the oven reaches that temperature. 2.7 Once every 6 months, each magnet wire oven must be checked using a smoke stick or equivalent approach to confirm that the oven is operating at negative pressure compared to the surrounding atmosphere. 3.0 Control Device Efficiency. 3.1 Determine the weight fraction carbon content of the volatile portion of each coating, thinner, additive, or cleaning material used during each test run using either the procedure in section 3.2 or 3.3. 3.2 Following the procedures in Method 204F, distill a sample of each coating, thinner, additive, or cleaning material used during each test run to separate the volatile portion. Determine the weight fraction carbon content of each distillate using ASTM Method D5291-02, "Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants" (incorporated by reference, see §63.14). 3.3 Analyze each coating, thinner, additive or cleaning material used during each test run using Method 311. For each volatile compound detected in the chromatographic analysis of each coating, thinner, additive, or cleaning material calculate the weight fraction of that whole compound in the coating, thinner, additive, or cleaning material. For each volatile compound detected in the gas chromatographic analysis of each coating, thinner, additive, or cleaning material calculate the weight fraction of the carbon in that compound in the coating, thinner, additive, or cleaning material. Calculate the weight fraction carbon content of each coating, thinner, additive, or cleaning material as the ratio of the sum of the carbon weight fractions divided by the sum of the whole compound weight fractions. 3.4 Determine the mass fraction of total volatile hydrocarbon (TVH_i) in each coating, thinner, additive, or cleaning material, i, used during each test run using Method 24. The mass fraction of total volatile hydrocarbon equals the weight fraction volatile matter (W, in Method 24) minus the weight fraction water (Www in Method 24), if any. present in the coating. The ASTM Method D6053-00, "Standard Test Method for Determination of Volatile Organic Compound (VOC) Content of Electrical Insulating Varnishes" (incorporated by reference, see §63.14), may be used as an alternative to Method 24 for magnet wire enamels. The specimen size for testing magnet wire enamels with ASTM Method D6053-00 must be 2.0 ±0.1 grams. 3.5 Determine the volume (VOL_i) or mass $(MASS_i)$ of each coating, thinner, additive, or cleaning material, i, used during each test run 3.6 Calculate the total volatile hydrocarbon input $(TVHC_{inlet})$ to the control device during each test run, as carbon, using Equation 1. $$TVHC_{inlet} = \sum_{i=1}^{n} (TVH_i \times VOL_i \times D_i \times CD_i)$$ (Eq. 1) where: ${ m TVH_i}$ = Mass fraction of TVH in coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run. VOL_i = Volume of coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, liters. D_i = Density of coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, kg per liter. CD_i = Weight fraction carbon content of the distillate from coating, thinner, additive, or cleaning material, i, used in the coating operation during the test run, percent. # **Environmental Protection Agency** n = Number of coating, thinner, additive, and cleaning materials used in the coating operation during the test run. 3.7 If the mass, MASS, of each coating, solvent, additive, or cleaning material, i, used during the test run is measured directly then MASS, can be substituted for $VOL_i \times D_i$ in Equation 1 in section 3.6. Pt. 63, Subpt. MMMM, App. A 3.8 Determine the TVHC output (TVHC outlet) from the control device, as carbon, during each test run using the methods in §63.3966(a) and the procedure for determining $M_{\rm fo}$ in §63.3966(d). TVHC outlet equals $M_{\rm fo}$ times the length of the test run in hours. 3.9 Determine the control device efficiency (DRE) for each test run using Equation 2: DRE = $$\frac{\left(\text{TVHC}_{\text{inlet}} - \text{TVHC}_{\text{outlet}}\right)}{\text{TVHC}_{\text{inlet}}} \times 100$$ (Eq. 2) 3.10 The efficiency of the control device is the average of the three individual test run values determined in section 3.9. 3.11 As an alternative to establishing and monitoring the destruction efficiency operating parameters for catalytic oxidizers in §63.3967(b), the monitoring described in sections 3.12 and 3.13 may be used for magnet wire coating machines equipped with catalytic oxidizers. 3.12 During the performance test, you must monitor and record the temperature either just before or just after the catalyst bed at least once every 15 minutes during each of the three test runs. Use the data collected during the performance test to calculate and record the average temperature either just before or just after the catalyst bed during the performance test. This is the minimum operating limit for your catalytic oxidizer and for the catalytic oxidizers in identical or very similar magnet wire coating machines represented by the tested magnet wire coating machine. 3.13 You must develop and implement an inspection and maintenance plan for your catalytic oxidizer(s). The plan must address, at a minimum, the elements specified in sections 3.14 and 3.15, and the elements specified in either (a) section 3.16 or (b) sections 3.17 and 3.18 3.14 You must conduct a monthly external inspection of each catalytic oxidizer system, including the burner assembly and fuel supply lines for problems and, as necessary, adjust the equipment to assure proper air-to-fuel mixtures. 3.15 You must conduct an annual internal inspection of each accessible catalyst bed to check for channeling, abrasion, and settling. If problems are found, you must replace the catalyst bed or take corrective action consistent with the manufacturer's recommendations. This provision does not apply to internal catalysts which cannot be accessed without disassembling the magnet wire oven. 3.16 You must take a sample of each catalyst bed and perform an analysis of the catalyst activity (i.e., conversion efficiency) following the manufacturer's or catalyst supplier's recommended procedures. This sampling and analysis must be done within the time period shown in Table 1 below of the most recent of the last catalyst activity test or the last catalyst replacement. For example, if the warranty for the catalyst is 3 years and the catalyst was more recently replaced then the sampling and analysis must be done within the earlier of 26,280 operating hours or 5 calendar years of the last catalyst replacement. If the warranty for the catalyst is 3 years and the catalyst was more recently tested then the sampling and analysis must be done within the earlier of 13.140 operating hours or 3 calendar years of the last catalyst activity test. If problems are found during the catalyst activity test, you must replace the catalyst bed or take corrective action consistent with the manufacturer's recommendations. TABLE 1—CATALYST MONITORING REQUIREMENTS | If the catalyst was last (more recently) replaced and the warranty period is | Then the time between catalyst replacement and the next catalyst activity test cannot exceed the earlier of | And the catalyst was more recently tested, then the time between catalyst activity tests cannot exceed the earlier of | |--|---|---| | 1 year | 8,760 operating hours or 5 calendar years. | 8,760 operating hours or 3 calendar years. | | 2 years | 15,520 operating hours or 5 calendar years. | 8,760 operating hours or 3 calendar years. | | 3 years | | 13,100 operating hours or 3 calendar years. | #### § 63.4080 TABLE 1—CATALYST MONITORING REQUIREMENTS—Continued | If the catalyst was last (more recently) replaced and the warranty period is | Then the time between catalyst replacement and the next catalyst activity test cannot exceed the earlier of | And the catalyst was more recently tested, then the time between catalyst activity tests cannot exceed the earlier of | |--|---|---| | 4 years | 35,040 operating hours or 5 calendar years. | 17,520 operating hours or 3 calendar years. | | 5 or more years | | 21,900 operating hours or 3 calendar years. | 3.17 During the performance test, you must determine the average concentration of organic compounds as carbon in the magnet wire oven exhaust stack gases (C. in Equation 1 in §63.3966(d)) and the destruction efficiency of the catalytic oxidizer, and calculate the operating limit for oven exhaust stack gas concentration as follows. You must identify the highest organic HAP content coating used on this magnet wire coating machine or any identical or very similar magnet wire coating machines to which the same destruction efficiency test results will be applied. Calculate the percent emission reduction necessary to meet the magnet wire coating emission limit when using this coating. Calculate the average concentration of organic compounds as carbon in the magnet wire oven exhaust stack gases that would be equivalent to exactly meeting the magnet wire coating emissions limit when using the highest organic HAP content coating. The maximum operating limit for oven exhaust stack gas concentration equals 90 percent of this calculated concentration. 3.18 For each magnet wire coating machine equipped with a catalytic oxidizer you must perform an annual 10 minute test of the oven exhaust stack gases using EPA Method 25A. This test must be performed under steady state operating conditions similar to those at which the last destruction efficiency test for equipment of that type (either the specific magnet wire coating machine or an identical or very similar magnet wire coating machine) was conducted. If the average exhaust stack gas concentration during the annual test of a magnet wire coating machine equipped with a catalytic oxidizer is greater than the operating limit established in section 3.17 then that is a deviation from the operating limit for that catalytic oxidizer. If problems are found during the annual 10-minute test of the oven exhaust stack gases, you must replace the catalyst bed or take other corrective action consistent with the manufacturer's recommendations. 3.19 If a catalyst bed is replaced and the replacement catalyst is not of like or better kind and quality as the old catalyst, then you must conduct a new performance test to determine destruction efficiency according to \$63.3966 and establish new operating lim- its for that catalytic oxidizer unless destruction efficiency test results and operating limits for an identical or very similar unit (including consideration of the replacement catalyst) are available and approved for use for the catalytic oxidizer with the replacement catalyst. 3.20 If a catalyst bed is replaced and the replacement catalyst is of like or better kind and quality as the old catalyst, then a new performance test to determine destruction efficiency is not required and you may continue to use the previously established operating limits for that catalytic oxidizer. # Subpart NNNN—National Emission Standards for Hazardous Air Pollutants: Surface Coating of Large Appliances SOURCE: 67 FR 48262, July 23, 2002, unless otherwise noted WHAT THIS SUBPART COVERS # § 63.4080 What is the purpose of this subpart? This subpart establishes national emission standards for hazardous air pollutants for large appliance surface coating facilities. This subpart also establishes requirements to demonstrate initial and continuous compliance with the emission limitations. ## §63.4081 Am I subject to this subpart? (a) You are subject to this subpart if you own or operate a facility that applies coatings to large appliance parts or products, and is a major source, is located at a major source, or is part of a major source of emissions of hazardous air pollutants (HAP), except as provided in paragraph (d) of this section. A major source of HAP emissions is any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential